Воздух и вода в почве В условиях Нечерноземной зоны избыточное увлажнение почвы оказывает влияние на ее воздушный режим. Чем выше влажность, тем меньше в почве воздуха. Содержащийся в почвенном воздухе кислород необходим для дыхания корней, жизнедеятельности многих микроорганизмов, а также для окисления некоторых вредных веществ, которые могут образовываться в почве при недостатке кислорода (метан, сероводород, некоторые токсичные органические соединения). Кислород воздуха является одним из главнейших факторов развития растений. Рост корней растений, поглощение ими воды и питательных веществ и ход их превращения тесно связаны с дыханием корней. Дыхание - это основа поглощения необходимых развивающемуся растительному организму питательных веществ. Тесная связь поглощения ионов минеральных солей с дыханием тканей растений установлена в многочисленных работах как отечественных, так и зарубежных ученых. В условиях резного подавления дыхания тканей корней (отсутствие кислорода) наблюдается даже выделение в наружный раствор ранее поглощенных веществ. Нормальная или достаточная аэрация почвы должна быть непременным условием плодородия почвы, так как растения потребляют только полностью окисленные элементы пищи, образующиеся в результате аэробных процессов. Состав атмосферного воздуха более или менее постоянен и обнаруживает лишь незначительные колебания. Почвенный воздух непрерывно изменяется. Обычно содержание кислорода в нем значительно меньше, а углекислого газа больше, чем в атмосферном. Основной причиной разницы в составе атмосферного и почвенного воздуха являются биологические процессы, протекающие в почве. Большое количество кислорода почвенного воздуха расходуется на дыхание корней. Имеющегося в почве запаса кислорода хватает при нормальном дыхании всего на 20-40 часов. Отсутствие кислородного голодания объясняется обновлением состава почвенного воздуха, которое может проходить двумя путями: а) перемещением всей массы воздуха почвы и обменом его на атмосферный («вентиляция») и б) диффузией - перемещением отдельных газов. Утверждения некоторых авторов о передвижении газов по корневым ходам растений маловероятны, тем более что они не подтверждены какими-либо экспериментальными результатами. Конечно, отмершие корни являются прекрасным питательным материалом. Но после его разложения корневые ходы не освобождаются полностью от органического вещества. О какой диффузии газов или порционном обновлении воздуха может быть речь в микро каналах корневых ходов, заполненных разложившимся органическим веществом? Зависимость скорости диффузии газов в почве от объема и размера пор, заполненных воздухом, подтверждают многие ученые, основываясь на многочисленных результатах экспериментальной работы. Поэтому любая обработка почвы, увеличивающая порозность (а, следовательно, и воздухоемкость) при условии, что ее влияние сохраняется некоторое время, снижает концентрацию углекислого газа и повышает содержание кислорода в почве. Однако нельзя отрицать положительную роль корней в окультуривании почвы, ее структуризации и косвенном улучшении водно-воздушного режима. С другой стороны, углублению корневых систем препятствует, прежде всего неблагоприятный физический режим - избыток влаги и недостаточная аэрация. В избыточно-увлажненных почвах диффузия сильно затруднена. При увеличении влажности почвы вода, заполняющая почвенные поры, не только вытесняет из них воздух, но и затрудняет диффузию газов. При возрастающем поступлении воды в почву набухшие коллоиды вызывают изоляцию пор, занятых воздухом, через которые могла бы осуществляться диффузия. В заполненные водой микропоры и в глубину увлажненных агрегатов почвы кислород поступает только диффузным путем через воду, т. е. во много раз медленнее, чем через воздух. В этих условиях кислород в почве может потребляться нацело. Важнейшими воздушными свойствами почвы являются воздухоемкость и воздухопроницаемость. Воздухоемкость почвы определяется величиной некапиллярных или меж агрегатных пор. Объем воздуха, заключенный в порах, не занятых водой, называют пористостью аэрации. В бесструктурных почвах она невысока и быстро снижается при их увлажнении. Структурные почвы, вследствие хорошо развитых меж агрегатных промежутков, имеют большую пористость аэрации даже при сильном увлажнении. В культурных почвах содержание воздуха колеблется в пределах 8-36% от общего объема. Воздухопроницаемость - свойство почвы пропускать через себя воздух. Она является важным условием нормального газообмена между почвой и атмосферой. Воздухопроницаемость хорошо выражена на легких, структурных и нормально увлажненных почвах. Тяжелые, бесструктурные и переувлажненные почвы слабо воздухопроницаемы. Нельзя полностью согласиться с утверждениями, что «в образуемые корнями полые трубочки легко проходят и долго сохраняются там вода, воздух, углекислый газ, решая проблему водно-воздушного обмена». Для таких смелых утверждений необходимы не только экспериментальные данные, но и знание физики почвы. Вода, находящаяся в почве, вступает с ее твердой фазой в определенные взаимодействия, характер и направленность которых обусловливаются как сорбционными (молекулярное притяжение), менисковыми (капиллярные явления), гравитационными (сила тяжести) силами, так и физическими свойствами почвы. Эти силы и определяют те важнейшие водные свойства почвы, которые оказывают существенное влияние на водный режим почвы, накопление и рациональное использование влаги растениями. Влажность почвы - это отношение содержащейся воды к весу абсолютно сухой почвы, выраженное в процентах. Влажность почвы зависит от количества выпадающих осадков, интенсивности потребления воды растениями, температуры воздуха и т. п. При постепенном высыхании почвы наступает такое состояние, когда в ней остается лишь влага, прочно удерживаемая в почве силами молекулярного притяжения и недоступная для растений. Тогда они начинают увядать. Эта степень увлажнения почвы называется влажностью устойчивого завядания растений. У легких почв она составляет 4-6%, у тяжелых возрастает до 12-14%. Влагоемкость - способность почвы удерживать то или иное количество воды. Различают следующие виды влагоемкости: 1) гигроскопическую; 2) наименьшую, или полевую; 3) капиллярную; 4) полную. Гигроскопическая влагоемкость - количество влаги, которое способна абсорбировать из воздуха абсолютно сухая почва на поверхности своих частиц. У большинства минеральных почв она колеблется от 3 до 10%. Наименьшая, или полевая влагоемкость - количество влаги, которое способна удержать почва в полевых условиях при промачивании ее сверху и после стекания свободной (гравитационной) воды. Капиллярная влагоемкость - количество воды, которое удерживается почвой в капиллярно-подпертом состоянии. Это наблюдается в слое почвы, расположенном непосредственно над зеркалом грунтовых вод. С увеличением содержания илистых фракций и перегноя влагоемкость возрастает и наибольшей величины достигает на торфяных почвах. Структурные почвы также имеют более высокую влагоемкость, чем бесструктурные. Водопроницаемость - способность почвы впитывать и фильтровать через себя воду. Она зависит от механического состава, содержания перегноя и структурности почв. Легкие почвы обладают высокой водопроницаемостью ввиду большого количества некапиллярных промежутков. Тяжелые и особенно сильно распыленные почвы отличаются слабой водопроницаемостью. Таким образом, микроскопические каналы, образованные корнями растений и заполненные разложившимся органическим веществом, не могут способствовать повышению водопроницаемости почв, однако, воздействуя на оструктуривание почвы, могут способствовать некоторому увеличению ее влагоемкости. В почве вода передвигается не по корневым ходам. Вниз она перемещается под действием силы тяжести (гравитации) через промежутки между структурными комками, а вверх - через сеть почвенных капилляров (отнюдь не вниз и не в стороны) за счет сил поверхностного натяжения. Водоподъемная способность - способность почв втягивать в себя и поднимать воду по капиллярным промежуткам. В песчаных почвах, где капиллярные промежутки широкие, высота капиллярного поднятия редко превышает 0,5-1 м, тогда как на глинистых почвах она может достигать 4-5 м. При высокой капиллярности растения обеспечиваются влагой даже при длительной засухе. Однако капиллярный подъем приводит к непроизводительной потере влаги. К. Константинов, канд. с.-х. наук Подпишись бесплатно на «САДОВЫЕ ПОДСКАЗКИ»
Понравилась статья? Подпишитесь на «САДОВЫЕ ПОДСКАЗКИ» – подборку актуальных статей с сайта: «GAZETASADOVOD.RU»
|